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ABSTRACT
Programmatic weak supervision methodologies expedite the la-
beling of extensive datasets using label functions (LFs) that encap-
sulate heuristic data sources. Nonetheless, the creation of precise
LFs necessitates domain expertise and substantial endeavors. Re-
cent advances in large language models (LLMs) have exhibited
substantial potential across diverse tasks, including synthesizing
LFs automatically. However, previous works either fall short of
creating accurate LFs due to a lack of specificity or require a
substantial monetary budget for exhaustive querying.

In this research, we propose a novel framework, DataSculpt,
that harnesses LLMs for automated LF generation. DataSculpt
leverages few-shot learning in an iterative PWS framework, cre-
ating a massive and diverse LF set with a single prompt template.
We evaluated DataSculpt on six real-world datasets. Our results
show that DataSculpt can generate accurate LFs and significantly
reduce costs. For instance, using GPT-3.5, DataSculpt achieved
downstream model accuracy comparable to exhaustive querying
methods at only a fraction of the cost, with total expenses around
$0.06 compared to over $250 for exhaustive querying. DataSculpt
demonstrates that efficient LF generation with high accuracy
is achievable, making it a practical solution for large-scale data
labeling.

1 INTRODUCTION
Modern machine learning models require large amounts of la-
beled data to achieve high accuracy, but manual labeling is expen-
sive, particularly when domain expertise is needed. The program-
matic weak supervision (PWS) paradigm [26, 28] offers a solution
by enabling rapid labeling of large datasets through the use of
label functions (LFs). LFs are heuristic rules that generate noisy
labels for subsets of data, reducing the cost and effort compared
to manual labeling. In the PWS paradigm, the user designs LFs to
automatically provide weak labels, which are then denoised and
aggregated by a label model. Finally, the aggregated labels are
used to train the downstream machine learning model (or end
model).

While PWS reduces the manual labeling burden, significant
effort is still required to design accurate LFs. To mitigate this,
researchers have developed frameworks like interactive weak
supervision [5] and interactive data programming [14], which
assist users in LF design. However, these methods require sub-
stantial user input and do not fully automate the LF creation
process.

Recent advancements in large language models (LLMs) such as
GPT-3 [6] have led researchers to explore their use in automating
LF design. ScriptoriumWS [15] employs the OpenAI Codexmodel
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[7] to generate code-based LFs automatically, while PromptedLF
[34] uses multiple prompts in a zero-shot manner to annotate
data, treating these annotations as weak labels. Although these
methods advance LF automation, they present trade-offs between
accuracy and cost. ScriptoriumWS often produces less accurate
LFs due to a lack of specificity in its broad prompts, while Prompt-
edLF achieves high accuracy but at significant cost by annotating
every unlabeled instance with multiple prompts.

To address these challenges, we introduce DataSculpt1, a novel
framework that leverages few-shot prompting to design highly
accurate and cost-effective labeling functions. Figure 1 illustrates
the iterative workflow of DataSculpt. In each iteration, the frame-
work selects a query instance from the unlabeled dataset, con-
structs a prompt for the LLM, and uses in-context examples from
the labeled validation set. The LLM-generated LFs are verified
for validity, accuracy, and redundancy before being added to
the LF set. DataSculpt advances automated weak supervision
techniques, offering several key innovations:

(1) Few-shot Prompting for iterative LF Generation: Un-
like previous approaches [15, 34], DataSculpt uniquely ap-
plies few-shot learning principles in an iterative workflow
to create highly specific and accurate LFs. By incorporating
demonstration examples from a labeled dataset and select-
ing specific query instances from the unlabeled dataset,
DataSculpt enables generation of a large and diverse LF
set with minimal manual input, significantly reducing the
need for multiple prompt templates.

(2) Integration of Advanced Prompting Strategies: We
are the first to explore and adapt cutting-edge prompting
techniques specifically for LF development. By incorporat-
ing chain-of-thought prompting [39], in-context example
selection [19] and self-consistency [38], DataSculpt en-
courages LLMs to break down the LF creation process into
logical steps and generate multiple LFs for each query
instance, enhancing the interpretability and reliablity of
synthesized LFs.

(3) Balanced Accuracy and Cost-effectiveness: To the best
of our knowledge, DataSculpt is the first work that exten-
sively evaluates and optimizes the trade-off between LF
accuracy and cost-effectiveness. By focusing on selected
query instances and using few-shot learning, our frame-
work achieves high LF accuracy while only requiring a
sample from the unlabeled dataset to query LLMs. This
approach significantly reduces costs compared to methods
that annotate every instance, while maintaining compara-
ble downstream model accuracy.

DataSculpt follows a recent line of research [16, 22, 36] ex-
ploring prompting techniques for the solution of problems that
necessitated human effort. While DataSculpt builds upon exist-
ing techniques, its contributions to the field of automated weak

1Code available at https://github.com/Gnaiqing/DataSculpt
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supervision are significant and multifaceted. Our work provides
the first comprehensive evaluation of various prompting strate-
gies for LF development, offers crucial insights into the trade-offs
between accuracy and cost in LF generation, and demonstrates
how the integration and optimization of existing techniques can
lead to substantial improvements in weak supervision pipelines.
Through extensive empirical analysis across multiple datasets,
DataSculpt not only advances our understanding of LLM-based
weak supervision but also establishes important benchmarks
and reproducible frameworks for future research in this rapidly
evolving field.

2 RELATEDWORK
Programmatic Weak Supervision. Programmatic Weak Supervi-

sion (PWS) [26, 28, 40] is an emerging framework that leverages
various weak supervision sources to label training data automat-
ically. In the PWS framework, users first design label functions
to provide weak labels to the data, and then the label model ag-
gregates noisy, weak labels to provide probabilistic labels to the
unlabeled data. Researchers have proposed various label models
[11, 26, 27] to learn the accuracy and correlations between label
functions.

Efficient label function design is another important research
direction for PWS. Snuba [37] proposes deriving label functions
from simple machine learning models. IWS [5], WITAN [9], and
Darwin [12] interactively ask users to verify candidate label
functions. Nemo [14] proposes the interactive data programming
framework, which interactively selects candidate instances for
users to observe and develop label functions. With the advance
of pre-trained language models, researchers have also begun
exploring prompting these models to design LFs automatically
[15, 34].

Large Language Models. Large language models (LLMs) devel-
oped recently, such as GPT-3 [6], GPT-4 [1], and Llama 2[35],
can perform various tasks by prompting. Finetuning LLMs us-
ing human feedback improves their performance in following
human instructions [25]. This has motivated researchers to de-
sign efficient prompting methods, including chain-of-thought
[39], self-consistency [38] and efficient in-context example selec-
tion methods [19]. Our paper adopts a few-shot learning-based
framework [6] for leveraging these LLMs to design LFs.

Active Learning. Active learning [31, 32] focuses on improving
the learning process by strategically selecting the most informa-
tive data points for the model to learn from. Various strategies
for active learning have been explored within the machine learn-
ing community, including uncertainty sampling [18], query-by-
committee [33], core-set methods [30], etc. For those interested
in a more detailed overview of active learning techniques, recent
surveys [20, 29] provide comprehensive coverage. Researchers
have also investigated active learning strategies to improve PWS
performance, such as guiding LF development [5, 14] or improv-
ing label quality [13, 23]. Our paper leverages active learning
strategies for query instance selection.

3 FRAMEWORK DESCRIPTION
DataSculpt is tailored for text classification tasks, which involve
categorizing text passages into various groups, such as topics or
sentiments. It also supports relationship classification between
entities within a passage, such as determining if two individuals
are spouses. This section describes the LF space and prompt

template used in DataSculpt, followed by strategies for selecting
query instances, in-context exemplars, and filtering LFs.

3.1 LF space
DataSculpt focuses on text classification, creating keyword-based
LFs from queried instances. A keyword-based LF, denoted as 𝜆𝑘,𝑐 ,
labels a passage as class 𝑐 if it contains a specific keyword or
phrase 𝑘 . DataSculpt restricts keywords to unigrams, bigrams,
and trigrams.

A single keyword may be insufficient for relationship classi-
fication tasks (e.g., determining if A and B are spouses in the
Spouse [8] dataset). For instance, the keyword marry cannot
distinguish between A marry B and A marry C. To address this,
DataSculpt extends keyword-based LFs to include target entities,
such as [A] marry [B], which activates if both entities match the
query.

While the keyword-based LFs only support inclusion (i.e., in-
cluding a keyword) by themselves, the label model can aggregate
the weak supervision sources and support more complicated cri-
teria like exclusion or conjunction. The downstream model in
PWS can generalize beyond keyword-based decision boundaries
by considering the text features (extracted by BERT [10] in our
experiments).

3.2 Prompt Template
DataSculpt employs few-shot learning to generate LFs using a
single template per task, which is at the heart of our proposal.
Figure 2 illustrates the Base and CoT templates for DataSculpt
respectively. Each template begins with a task description and
class definitions, followed by in-context examples to help the
LLM understand the task and output format. The in-context ex-
amples are selected from the validation set as detailed in Section
3.3. The template concludes with a user query, prompting the
LLM to generate LFs based on the query instance. This approach
leverages the advantages of few-shot learning, enabling DataS-
culpt to design accurate and diverse LFs. In the DataSculpt-CoT
prompt, the template includes a step-by-step reasoning process in
the prompt (italicized in Figure 2), further enhancing the output
accuracy using chain-of-thought [39]. The LLM produces a set
of keywords and a class label based on the queried instance. We
convert the keywords and class labels to Python programs that
detect whether the keywords exist in the text, which serves as
the LFs in the PWS framework.

3.3 In-context Example Selection
Providing a few in-context examples before the query helps
the LLM better understand the task, enhancing its effectiveness.
DataSculpt evaluates two in-context example selection methods:
class-balanced, which randomly selects examples balanced across
classes, and KATE [19], which selects examples closest to the
test input in a feature space. These examples are drawn from a
labeled validation set.

Examples must include indicative keywords and, if applying
CoT, a step-by-step reasoning process that requires manual anno-
tation. We select ten examples per dataset from the validation set
for class-balanced selection and manually provide keywords and
explanations. For KATE, manual annotation is impractical due
to varying query instances. Inspired by previous works on auto-
matically generating CoT [17, 43], we use the LLM to generate
indicative keywords and CoT for KATE-selected examples auto-
matically. These examples are labeled in advance, and the LLM
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Figure 1: Illustration of the DataSculpt framework for generating LFs. In each iteration, the framework selects query
instance and in-context examples from the unlabeled dataset and labeled validation set, respectively, and queries the LLM
to create LFs.

Figure 2: Prompt template for the DataSculpt framework. The underlined instructions are dataset-specific.

provides reasoning to justify the labels, similar to the prompts in
Figure 2, with labels included in the user input.

3.4 Query Instance Selection
DataSculpt iteratively selects instances for the LLM to generate
LFs, significantly influencing LF quality. We evaluate several
selection methods:

• Random Sampling: Randomly selects instances from the
unlabeled dataset (default strategy).

• Uncertain Sampling [18]: Selects instances where the
current downstream model is most uncertain, measured
by predictive entropy.

• Select by Expected Utility (SEU) [14]: This approach
first statistically measures the utility of potentially gener-
ated LFs, then proposes a user model that measures the
conditional probability of the user returning an LF when
observing specific instances. The user model estimates the
accuracy of candidate LFs and assumes that more accurate
LFs are prone to be selected by the user. Finally, SEU se-
lects the instance that leads to the highest expected utility
of LFs.

In DataSculpt, we provide one query instance per iteration.
We also experimented with providing multiple query instances in

the prompt per iteration, but we did not observe clear advantages
in the accuracy and coverage of curated LFs. We hypothesize that
this is because multiple query instances do not frequently have
keywords in common for designing better LFs; thus, querying
multiple instances in an iteration has a similar performance to
querying them separately in multiple iterations in terms of LF
design.

3.5 LF Filters
To ensure quality, DataSculpt applies several filters to the gener-
ated LFs:

• Validity Filter: Checks if the LF keywords are unigrams,
bigrams, or trigrams and if the labels are in candidate
classes.

• Accuracy Filter: Evaluates LFs on the validation set, prun-
ing those with an accuracy below a threshold (0.6 by de-
fault). If an LF is inactive on any validation instance, it
passes this filter.

• Redundancy Filter: Removes LFs with high similarity to
existing ones, using an intersection over union metric. An
LF is pruned if its consensus with an existing LF exceeds
95% over active instances.
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Table 1: Datasets used in evaluation.

Task Domain Dataset #Class #Train #Valid #Test

Spam Cls. Review Youtube [2] 2 1586 120 250
Text Message SMS [3] 2 4571 500 500

Sentiment Cls. Movie IMDB [21] 2 20000 2500 2500
Review Yelp [42] 2 30400 3800 3800

Tpoic Cls. News Agnews [42] 4 96000 12000 12000
Relation Cls. News Spouse [8] 2 22254 2811 2701

3.6 Default Class
In some classification tasks, the positive class refers to the exis-
tence of some pattern, and the negative class refers to its absence.
In these tasks, it is usually easier to design LFs for the positive
class than the negative class. Our evaluation shows that LLMs
often fail to provide LFs for the negative class, leading to class
imbalance and reduced performance. We define a default class
for datasets with these characteristics to address this. If any LFs
do not cover an instance, it is assigned to the default class before
training the downstream model. In our evaluations, the default
class is defined for the spouse dataset (default is no spouse rela-
tionship).

4 EXPERIMENTS
In this section, we comprehensively evaluate DataSculpt’s per-
formance in generating label functions (LFs) and compare it with
several baselines that leverage large language models (LLMs) for
LF design.

4.1 Experiment Setup
Weevaluate DataSculpt on six real-world text classification datasets
from the WRENCH benchmark [41]. Table 1 summarizes the
datasets used in our evaluation. To ensure a fair comparison, we
exclude the pre-existing LFs associated with these datasets in
the WRENCH benchmark and instead generate LFs using DataS-
culpt’s pipeline.

For each run of DataSculpt, we iteratively select 50 query in-
stances to design LFs. We repeat each run with different random
seeds five times and report the average LF statistics and down-
stream model performance after the LF development process. We
use BERT [10] (110M parameters) to extract features from the
text, MeTaL [27] as the label model, and logistic regression as the
downstream model, consistent with the WRENCH benchmark
configurations. Note that ground truth labels for the training
data are unavailable for the Spouse dataset, so we only report
metrics that do not require these labels.

DataSculpt offers various configuration options that affect its
performance. By default, we use the gpt-3.5-turbo-0613 model
from the OpenAI API [24] as the LLM, set temperature as 0.7,
apply random sampling for query instance selection, and use all
three LF filters (validity, accuracy, redundancy). We compare the
following versions of DataSculpt against baseline methods:

• DataSculpt-Base: Uses a basic few-shot learning prompt.
• DataSculpt-CoT: Uses a few-shot learning prompt with
the chain-of-thought strategy [39].

• DataSculpt-SC: Builds on DataSculpt-CoT by leverag-
ing self-consistency [38] to aggregate multiple responses.
Specifically, the LLM generates 10 responses, and the pre-
dicted label is determined by majority voting.

• DataSculpt-KATE: Extends DataSculpt-SC by incorpo-
rating the KATEmethod [19] to select in-context examples
similar to the queried instance.

Table 2: Statistics of synthesized LFs and end model accu-
racy.

Metric Method Youtube SMS IMDB Yelp Agnews Spouse AVG

#LFs

WRENCH 10 73 5 8 9 9 19.0
ScriptoriumWS 9 73 6 11 8 8 19.2
PromptedLF 10 73 7 7 4 11 18.7

DataSculpt-Base 76 164 88 127 180 14 108.2
DataSculpt-CoT 69 115 104 118 158 10 95.7
DataSculpt-SC 108 201 225 247 225 43 174.8

DataSculpt-KATE 117 200 329 321 236 13 202.7

LF Acc.

WRENCH 0.832 0.973 0.699 0.731 0.817 – 0.810
ScriptoriumWS 0.646 0.897 0.595 0.736 0.565 – 0.688
PromptedLF 0.810 0.923 0.953 0.882 0.674 – 0.848

DataSculpt-Base 0.739 0.913 0.718 0.769 0.847 – 0.797
DataSculpt-CoT 0.757 0.861 0.728 0.775 0.826 – 0.789
DataSculpt-SC 0.735 0.884 0.726 0.772 0.824 – 0.788

DataSculpt-KATE 0.726 0.870 0.731 0.761 0.811 – 0.780

LF Cov.

WRENCH 0.163 0.710 0.236 0.183 0.103 0.038 0.239
ScriptoriumWS 0.592 0.815 0.894 0.716 0.305 1.000 0.720
PromptedLF 0.219 0.011 0.369 0.723 0.334 0.200 0.309

DataSculpt-Base 0.025 0.007 0.038 0.024 0.002 0.026 0.020
DataSculpt-CoT 0.026 0.007 0.034 0.023 0.003 0.021 0.019
DataSculpt-SC 0.021 0.009 0.024 0.018 0.003 0.034 0.018

DataSculpt-KATE 0.020 0.008 0.017 0.014 0.003 0.006 0.011

Total Cov.

WRENCH 0.877 0.405 0.876 0.828 0.691 0.907 0.764
ScriptoriumWS 1.000 1.000 0.998 0.991 0.692 1.000 0.947
PromptedLF 0.974 0.530 0.970 1.000 0.916 0.940 0.888

DataSculpt-Base 0.808 0.637 0.932 0.900 0.323 0.305 0.651
DataSculpt-CoT 0.782 0.529 0.942 0.871 0.350 0.175 0.608
DataSculpt-SC 0.820 0.754 0.977 0.947 0.480 0.774 0.792

DataSculpt-KATE 0.832 0.716 0.980 0.948 0.438 0.061 0.663

EM Acc/F1

WRENCH 0.887 0.865 0.761 0.847 0.835 0.181 0.729
ScriptoriumWS 0.832 0.720 0.740 0.750 0.806 0.157 0.668
PromptedLF 0.908 0.832 0.831 0.858 0.663 0.462 0.759

DataSculpt-Base 0.896 0.821 0.791 0.869 0.813 0.412 0.767
DataSculpt-CoT 0.885 0.817 0.793 0.854 0.795 0.329 0.746
DataSculpt-SC 0.879 0.829 0.794 0.874 0.758 0.455 0.765

DataSculpt-KATE 0.862 0.836 0.788 0.879 0.800 0.440 0.768

4.1.1 Baselines. We compare DataSculpt with the following
baselines. For a fair comparison of end model accuracy, we use
MeTaL as the label model and logistic regression as the end model
across all baselines:

• WRENCH [41]: The WRENCH benchmark includes man-
ually designed LFs by human experts. This baseline pro-
vides an intuitive comparison of the quality of automati-
cally generated LFs versus manually designed ones.

• ScriptoriumWS [15]: ScriptoriumWS uses code genera-
tion models to create small programs that function as LFs.
Since ScriptoriumWS was evaluated on the same datasets
we use, we present the results reported by the authors.

• PromptedLF [34]: PromptedLF requires the user to design
multiple prompt templates, which are then combined with
unlabeled instances to query the LLM, and the responses
are treated as weak labels. The original paper provides
prompt templates for YouTube, SMS, and Spouse datasets.
We use these provided templates and create additional
templates for other datasets by translating the WRENCH
benchmark LFs into prompt templates. The templates can
be found in our code repository.

4.2 Performance Overview
Table 2 presents the statistics of LFs synthesized by the evaluated
frameworks, including the number of synthesized LFs (#LFs), the
average accuracy of LFs on the training set (LF Acc.), the average
coverage of LFs on the training set (LF Cov.), the total fraction of
data covered by any LF (Total Cov.), and the end model accuracy
or F1 score for imbalanced datasets on the test set (EM Acc/F1).
LF coverage measures the percentage of data where an LF is
activated (i.e., returns a weak label). LF accuracy is measured on
the subset of data where the LF is activated. To help the readers
navigate through the figures, we highlight the top 3 results using
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Figure 3: Token usage for synthesizing LFs.

Figure 4: API cost for synthesizing LFs.

bold, italic with bold, and underline tags, respectively, in Table 2.
We also report the average results on all evaluated datasets.

From Table 2, we observe that DataSculpt generates a signif-
icantly more extensive set of LFs than baseline methods. This
is because, in baseline methods, the human effort required to
design LFs scales linearly with the size of the LF set, making it
impractical to create a large LF set with limited human resources.
Conversely, DataSculpt requires the user to design only a single
prompt template for each dataset, with the diversity of synthe-
sized LFs arising from the selection of queried instances. This
allows DataSculpt to scale to hundreds of LFs without increasing
the human effort.

DataSculpt is also highly cost-efficient. Figures 3 and 4 il-
lustrate the different methods’ token usage and API costs, re-
spectively. DataSculpt-Base consumes 38,992 tokens across six
datasets, costing only $0.06 in total2. In contrast, PromptedLF
consumes over 170 million tokens and costs over $250 to label
the same datasets, with only minor improvements in LF accuracy.
This efficiency arises because DataSculpt requires only Θ(𝑚)
queries (where m is the number of LFs to create). In contrast,
PromptedLF must query every unlabeled instance using every
prompt template. Thus, DataSculpt offers a cost-efficient solution
for synthesizing LFs with good accuracy.

Regarding the accuracy of synthesized LFs, DataSculpt achieves
accuracy levels on par with human-designed LFs in theWRENCH
benchmark and outperforms LFs synthesized by ScriptoriumWS
by 10.9 points on average. This indicates that LLMs can produce

2the API cost for gpt-3.5-turbo-0613 was $1.50 / 1M tokens for input and $2.0 / 1M
tokens for output: https://openai.com/api/pricing/

Table 3: Ablation study using different LLMs.

Metric LLM Youtube SMS(F1) IMDB Yelp Agnews Spouse(F1) AVG

#LFs

GPT-3.5 108 201 225 247 225 43 174.8
GPT-4 115 232 242 248 257 66 193.3

Llama2-CHAT-7b 95 243 363 309 250 32 215.3
Llama2-CHAT-13b 74 192 215 167 266 33 157.8
Llama2-CHAT-70b 98 204 283 277 239 10 185.2

LF Acc.

GPT-3.5 0.735 0.884 0.726 0.772 0.824 – 0.788
GPT-4 0.856 0.923 0.752 0.801 0.847 – 0.836

Llama2-CHAT-7b 0.628 0.833 0.669 0.735 0.744 – 0.722
Llama2-CHAT-13b 0.568 0.784 0.672 0.750 0.784 – 0.712
Llama2-CHAT-70b 0.716 0.853 0.715 0.766 0.833 – 0.777

LF Cov.

GPT-3.5 0.021 0.009 0.024 0.018 0.003 0.034 0.018
GPT-4 0.023 0.011 0.020 0.015 0.004 0.010 0.014

Llama2-CHAT-7b 0.021 0.011 0.019 0.016 0.004 0.062 0.022
Llama2-CHAT-13b 0.013 0.008 0.021 0.015 0.004 0.031 0.015
Llama2-CHAT-70b 0.024 0.009 0.020 0.014 0.004 0.005 0.013

Total Cov.

GPT-3.5 0.820 0.754 0.977 0.947 0.480 0.774 0.792
GPT-4 0.838 0.860 0.972 0.930 0.590 0.326 0.753

Llama2-CHAT-7b 0.743 0.869 0.988 0.956 0.560 0.610 0.788
Llama2-CHAT-13b 0.776 0.725 0.952 0.855 0.570 0.711 0.765
Llama2-CHAT-70b 0.788 0.761 0.980 0.935 0.576 0.048 0.681

EM Acc/F1

GPT-3.5 0.879 0.829 0.794 0.874 0.758 0.455 0.765
GPT-4 0.898 0.852 0.801 0.871 0.818 0.438 0.780

Llama2-CHAT-7b 0.895 0.813 0.786 0.869 0.810 0.074 0.708
Llama2-CHAT-13b 0.826 0.808 0.775 0.868 0.719 0.364 0.727
Llama2-CHAT-70b 0.871 0.855 0.786 0.864 0.817 0.239 0.739

high-quality LFs by focusing on specific query instances rather
than following general instructions. Note that as we are evaluat-
ing the average LF accuracy, this advantage is independent of the
LF set size of DataSculpt or ScriptoriumWS. While PromptedLF
generally achieves the best accuracy due to its instance-specific
weak labels, it is also significantly more costly due to its exhaus-
tive querying strategy.

Next, we examine the end model accuracy using LFs syn-
thesized by different frameworks. DataSculpt-Base outperforms
WRENCH on 4 out of 6 datasets and surpasses ScriptoriumWS on
all evaluated datasets, consistent with the comparison of average
LF accuracy. Specifically, DataSculpt excels in sentiment analysis
tasks (IMDB and Yelp). DataSculpt-Base outperforms PromptedLF
on 2 of 6 datasets. Averaging over all six datasets, DataSculpt-Base
outperforms PromptedLF by 0.9 points regarding downstream
model accuracy. Overall, while DataSculpt creates LFs based on
only a subset of instances, its downstream model performance
rivals expensive prompting strategies like PromptedLF.

Regarding coverage, a single LF curated by DataSculpt gener-
ally has lower coverage than other evaluated methods as they are
based on a single keyword. However, DataSculpt compensates for
this with larger LF sets, resulting in overall coverage comparable
to the WRENCH baseline.

There is no significant difference in the accuracy or cover-
age of generated LFs among the evaluated versions of DataS-
culpt. However, the self-consistency methods (DataSculpt-SC
and DataSculpt-KATE) help create a larger LF set by leveraging
multiple responses from the LLM, thus enhancing LF diversity.

4.3 Comparative Studies
Next, we conduct comparative studies to evaluate the impact of
different design choices in DataSculpt, including the choice of
LLM, query instance selection methods, and LF filtering tech-
niques. We use the DataSculpt-SC configuration in this section.

Pre-trained Language Models. We assess the performance of
different pre-trained language models in DataSculpt. For GPT-3.5
and GPT-4, we use the gpt-3.5-turbo-0613 and gpt-4-0613 models
from the OpenAI API [24]. For Llama2-CHAT models, we use
the Anyscale AI API [4] and evaluate three variants of Llama2-
CHAT models with 7 billion, 13 billion, and 70 billion parameters,
respectively. The results are shown in Table 3.

Regarding LF accuracy, GPT-4 performs best, followed by GPT-
3.5 and Llama2-CHAT-70b. Averaging across all datasets (except
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Table 4: Ablation study using different samplers.

Metrics Sampler Youtube SMS (F1) IMDB Yelp Agnews Spouse (F1) AVG

#LFs
random 108 201 225 247 225 43 174.8
uncertain 118 192 225 232 193 79 173.2

SEU 25 62 112 77 126 23 70.8

LF Acc.
random 0.735 0.884 0.726 0.772 0.824 – 0.788
uncertain 0.693 0.811 0.727 0.776 0.738 – 0.749

SEU 0.788 0.944 0.733 0.772 0.754 – 0.798

LF Cov.
random 0.021 0.009 0.024 0.018 0.003 0.034 0.018
uncertain 0.018 0.008 0.022 0.018 0.002 0.013 0.014

SEU 0.034 0.018 0.033 0.025 0.004 0.006 0.020

Total Cov.
random 0.820 0.754 0.977 0.947 0.480 0.774 0.792
uncertain 0.832 0.692 0.971 0.942 0.358 0.643 0.740

SEU 0.501 0.652 0.937 0.798 0.362 0.090 0.557

EM Acc/F1
random 0.879 0.829 0.794 0.874 0.758 0.455 0.765
uncertain 0.878 0.823 0.793 0.877 0.738 0.461 0.762

SEU 0.810 0.730 0.787 0.835 0.786 0.452 0.733

Table 5: Ablation study using different LF filters.

Metrics Filter Youtube SMS (F1) IMDB Yelp Agnews Spouse (F1) AVG

#LF
all 108 201 225 247 225 43 174.8

no accuracy 129 234 368 371 325 53 246.7
no redundancy 210 259 294 337 261 53 235.7

LF Acc.
all 0.735 0.884 0.726 0.772 0.824 – 0.788

no accuracy 0.690 0.773 0.640 0.685 0.678 – 0.693
no redundancy 0.822 0.884 0.732 0.776 0.822 – 0.807

LF Cov.
all 0.021 0.009 0.024 0.018 0.003 0.034 0.018

no accuracy 0.026 0.011 0.033 0.024 0.005 0.029 0.021
no redundancy 0.045 0.008 0.042 0.031 0.004 0.056 0.031

Total Cov.
all 0.820 0.754 0.977 0.947 0.480 0.774 0.792

no accuracy 0.864 0.809 0.998 0.984 0.743 0.771 0.862
no redundancy 0.823 0.756 0.974 0.941 0.482 0.714 0.782

EM Acc/F1
all 0.879 0.829 0.794 0.874 0.758 0.455 0.765

no accuracy 0.801 0.744 0.691 0.834 0.748 0.258 0.679
no redundancy 0.851 0.832 0.796 0.855 0.802 0.284 0.737

Spouse), GPT-4 outperforms GPT-3.5 by 4.8 points and Llama2-
CHAT-70b by 5.9 points in LF accuracy. The smaller Llama2
models generally exhibit lower accuracy and sometimes generate
artificial examples instead of addressing the query directly. The
same trend is observed in end model accuracy, where GPT-4
outperforms GPT-3.5 by 1.5 points and Llama2-CHAT-70b by
4.1 points. Although GPT-4 offers the highest accuracy, the gap
between GPT-4 and the more cost-effective models like GPT-3.5
and Llama2-CHAT-70b is not substantial. Considering the balance
between accuracy and cost, GPT-3.5 and Llama2-CHAT-70b are
practical choices for LF design.

Query Instance Selection. Table 4 evaluates the impact of dif-
ferent query instance selection methods on LF statistics and
end model accuracy. Random sampling and uncertain sampling
produce LF sets of similar size, while SEU results in smaller LF
sets. This is because SEU tends to select similar query instances,
leading to redundancy pruned by LF filters. Regarding LF ac-
curacy, random sampling and SEU are comparable, while un-
certain sampling performs worse. Averaging across all datasets
(except Spouse), random sampling outperforms uncertain sam-
pling by 3.9 points, and SEU outperforms uncertain sampling
by 4.9 points in LF accuracy. Uncertain sampling often selects
difficult instances, which LLMs may not effectively label. For
end model accuracy, random sampling generally performs best,
outperforming uncertain sampling by 0.3 points and SEU by 3.2
points on average. Random sampling selects a diverse set of in-
stances, helping DataSculpt generate a more comprehensive LF
set, which enhances downstream model accuracy.

LF Filtering. We compare three LF filtering approaches: ap-
plying all filters, removing the accuracy filter, and removing
the redundancy filter. Table 5 presents the results. Removing
any filter increases the LF set size. Averaging across all datasets,
omitting the accuracy filter reduces LF accuracy by 9.5 points
and end model accuracy by 8.6 points, highlighting the impor-
tance of filtering out inaccurate LFs. The impact of removing the
redundancy filter varies by dataset. In 3 out of 6 datasets, end

model accuracy improves when the redundancy filter is omitted,
likely because high-quality LFs are retained. Our findings suggest
always using the accuracy filter to ensure downstream model
accuracy, while the redundancy filter’s use may depend on the
specific dataset.

5 DISCUSSIONS
Based on our evaluation, we provide a few takeaways for lever-
aging LLMs to design LFs:

T1: LLMs perform well in designing keyword-based LFs for
text classification. Still, verifying the accuracy of auto-
generated LFs (e.g., using a labeled validation set) is crucial
for enhancing downstream model accuracy.

T2: While prompting methods like chain-of-thought and
KATE improve the LLM’s accuracy in some datasets, their
performance is dataset-dependent, and more accurate pre-
dictions do not always lead to more accurate LFs.

T3: Current active query instance selection methods do not
work well in prompting LLMs to design LFs because they
do not consider the imperfect nature of LLMs or learn
from LLM feedback. Further research is required to create
more effective selection methods for LLM prompting.

The current framework has a few limitations. First, it focuses
on text classification tasks and design keyword-based label func-
tions; thus, further investigation is required to verify how well
the approach can generalize to other label functions and tasks.
Second, as the framework requires a labeled validation set for
pruning out the inaccurate LFs, the user must manually label
a small set of data. Lastly, our work does not revise the LFs
developed by LLMs. Future works could consider an iterative
prompting strategy to enhance LF quality further.

6 CONCLUSIONS
In this paper, we proposed DataSculpt, a novel framework that
leverages large language models to design label functions auto-
matically for programmatic weak supervision. DataSculpt lever-
ages few-shot learning to create a massive number of label func-
tions cost-efficiently. Experiments on six real-world datasets
show that DataSculpt can create LFs with high accuracy at only
a fraction of the cost of exhaustive querying methods.
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